Premium

Získejte všechny články mimořádně
jen za 49 Kč/3 měsíce

Proč jsou radioteleskopy výkonnější než „obyčejné“ teleskopy?

Říká se jí radiointerferometrie. Metoda, díky níž se dají pozorovat vzdálené galaxie. Pracuje s přesností, o jaké se teleskopům, pracujícím s viditelným světlem, bude dlouho jen zdát.

O novém projektu, ve kterém se propojí radioteleskopy, rozestavěné po celém světě, jsem psala v minulém blogu. Bude založen na radiointerferometrii, sbírání dat v milimetrové a submilimetrové oblasti spektra, jejich skládání a následném vyhodnocení. Projekt dostal název Very Long Baseline Interferometry (VLBI). Pomocí obrovského množství dat z navzájem velice vzdálených radioteleskopů se dá dokonce pozorovat superhmotná černá díra v centru naší galaxie. Metoda je tak výkonná, že mnohotisíckrát předčí přesnost pozorování ve viditelném světle (například snímky slavného Hubbleova teleskopu). Proč je pozorování pomocí radioteleskopů tak efektivní?

Princip teleskopu, pracujícího s viditelným světlem

Teleskopy, které pracují s viditelným světlem, se potýkají s řadou problémů. Je žádoucí, aby byl pozorovací průměr teleskopu pokud možno co největší. Čím je větší než čočka v našem oku, tím více detailů na nebi pozoruje. Čočky v dalekohledech hvězdy nezvětšují, jak by se mohlo na první pohled zdát, ale pomáhají sbírat větší množství světelné informace.

Optické dalekohledy, pracující s čočkami se ovšem nemohou stavět libovolně velké. Světelný signál, které čočka sbírá, totiž průchodem přes ni zároveň slábne. Čím větší čočku se pokusíme  vyrobit, tím silnější musí být, aby byla dostatečně stabilní. Tím více následně oslabuje světlo, které přes ni prochází. U čoček větších než 1 metr už nepozorujeme další zlepšení viditelnosti vzdálených hvězd. Začnou u nich převažovat negativní následky silné vrstvy skla. Navíc jsou velké skleněné čočky tak těžké, že se jejich tenčí okraje nebo středy vlastní vahou tříští. Další zvětšování teleskopů muselo jít jinou cestou.

Tzv. „reflektory“, zrcadlové teleskopy pracují na jiném principu. Světelný paprsek už nemusí procházet skleněnou čočkou. Namísto toho je odražen od tzv. zrcadla, uvnitř tubusu. Díky tomu, že se dá zrcadlo ze zadní strany podepřít, je stabilnější než skleněná čočka. Průměry zrcadel těchto teleskopů běžně dosahují několika metrů. U těch největších z nich se ale opět vynořily technické problémy. Jejich zrcadla se bortí pod vlastní vahou, i když se to projevuje při daleko větších rozměrech, než u optické čočky. Děje se to zhruba od pěti metrů průměru zrcadla.  

Schema: Dva příklady zrcadlových teleskopů. Schematické znázornění sběru světelných paprsků pomocí zrcadel.

Řešením tohoto problému se stala tzv. segmentace.  Její princip spočívá v tom, že se zrcadlo už nevyrábí z jednoho kusu materiálu. Jak se ukázalo, stejně dobře poslouží několik menších, vzájemně propojených zrcadel. Teoreticky bychom tak mohli vytvořit neomezeně velkou sběrnou plochu teleskopu, kdyby ...

... se při velikostech kolem deseti metrů nepřihlásila pro změnu ke slovu další překážka, která tentokrát není technická, je čistě fyzikální. Světlo vzdálených pozorovaných hvězd totiž nemusí projít jen sběrnou soustavou teleskopu (čočkou nebo soustavou zrcadel), musí především projít pozemskou atmosférou. Pohyb vzduchových vrstev v ní ale způsobuje mihotání a rozostření signálu. Vzdálený signál, který by mohla zachytit větší a větší zrcadla, bude neodvolatelně degradovat. Ani větší počet zrcadel proto už nepřinese lepší výsledek.

Do věci se musela vložit počítačová technika. Metoda, které se říká adaptivní optika si bere na pomoc laserový paprsek, kterým „proměří“ aktuální stav atmosféry. Počítač pak předává signál na pohyblivou vrstvu zrcadla, která se podle potřeby deformuje a chvění atmosféry „dorovná“. Na obrázku vidíte velikosti dnes existujících i naplánovaných optických teleskopů.

Radioteleskopy

Jakkoliv jsou dnes optické teleskopy dokonalé, výkonem se nemohou rovnat svým příbuzným – radioteleskopům. Ty pracují na jiném principu. Zaměřují se na elektromagnetické vlny, které jsou pro naše oči neviditelné.

Systém, složený z několika radioteleskopů navíc může využívat tzv. interferometrii. Signály, které pozorují jednotlivé teleskopy, se dají uložit do paměti počítače a později se vzájemně skládají. K tomu se používá tzv. „fourierova transformace“. Práci na ní vědci rádi přenechávají počítačům.

Složené snímky pak vykazují oslabení nebo zesílení signálu podle určitého pravidla. Platí tu nejen pravidlo „víc očí víc vidí“, ale také pravidlo „ navzájem vzdálenější oči vidí lépe“.

Rozlišení, se kterým pracuje systém radioteleskopů, je totiž závislé na dvou věcech – použité vlnové délce (tedy druhu) elektromagnetického záření a vzdálenosti mezi jednotlivými anténami.

Jednotlivé body na obloze měří několik teleskopů zároveň. K tomu je samozřejmě potřeba, aby byly všechny teleskopy synchronizované neobyčejně přesnými hodinami. Výsledky měření, opatřené časovými údaji, se ukládají do paměti počítače. Ten je pak ještě koriguje. Radiovlny totiž trpí při průchodu naší atmosférou podobně jako viditelné světlo.

Jak funguje radiová interferometrie?

align="justify"Jeden signál – jeden teleskop

 

Na vrchním obrázku je princip, na kterém pracuje zrcadlový teleskop. Sbírá informace z oblohy pomocí velkého odražeče ve tvaru paraboly. Signál, který přichází z vesmíru, se odráží od povrchu paraboly do snímače, který se nachází uprostřed obrázku. O citlivosti systému rozhoduje velikost paraboly a tím i vzdálenost obou nejkrajnějších signálů (zde černou barvou).

align="justify"Jeden signál – dva radioteleskopy

Dva různé signály, které pocházejí z jednoho pozorovaného bodu ale jsou zaregistrované dvěma teleskopy, mají citlivost daleko větší. Dají se pomocí počítače složit do jednoho obrázku, ve kterém se pak dají rozeznat interference (body, ve kterých se signál jednotlivých elektromagnetických vln navzájem oslabuje a zesiluje). Zpětně se pak dá počítačem vytvořit daleko ostřejší obrázek zdroje.

Jeden signál – několik teleskopů, umístěných na přímce

Dalšího zlepšení výkonnosti radioastronomie dosáhne tehdy, když se do jedné řady umístí hned několik teleskopů.

Na obrázku vidíte výhodu – teleskopy umístěné na jedné přímce umožňují přesněji lokalizovat maximum signálu.

align="justify"  align="justify"Jeden signál – několik teleskopů umístěných do kříže nebo do tvaru písmene „L“

Umístěním detektorů do tvaru kříže nebo písmene „L“ se získá další prostorová komponenta – a maximum signálu se dá rozeznat ještě přesněji.

Co to znamená v praxi?

Radioteleskopy se odlišují od velkých optických teleskopů tím, že registrují jinou vlnovou délku elektromagnetického záření.

Optické teleskopy rozliší dva podobné zdroje, které se na obloze nacházejí ve vzdálenosti 0,01 obloukové vteřiny. Obří radioteleskop, skládající se z antén rozmístěných po celé Zemi dosahuje rozlišení 0,001 obloukové vteřiny.

Ve vrchní části obrázku vidíte stejný zdroj, pozorovaný v radiospektru (vlevo) a ve viditelném spektru pomocí Hubbleova teleskopu (vpravo).

Ve spodní části obrázku pak vidíte, nakolik je radiointerferometrie výkonnou metodou. Náš nejlepší vesmírný teleskop vidí vzdálený zdroj jen jako jasnou tečku. Systém radioteleskopů dokáže tuto jasnou tečku rozložit a rozeznává v ní další detaily.

Nabízí se otázka, proč nepoužíváme interfometrii u optických teleskopů. Je to proto, že optické teleskopy využívají signál s kratšími vlnovými délkami, pro které by se velikost přijímací antény musela pohybovat v řádu mikrometru. Optické teleskopy ovšem také mohou využívat efektu interferencí. Signály se ale neukládají do paměti počítače, zpracovávají se v reálném čase. K tomu musí být teleskopy navzájem propojeny optickými kabely – a nemohou být tedy od sebe navzájem vzdáleny tak, jak by bylo potřeba pro vysokou citlivost systému.

 

 

 

 

Autor: Dana Tenzler | čtvrtek 30.3.2017 8:00 | karma článku: 21,66 | přečteno: 585x
  • Další články autora

Dana Tenzler

Co způsobuje barvu minerálů (4) - klamání tělem a přibarvování reality

Poslední část malého blogového seriálu o tom, proč jsou vlastně horniny barevné a proč je zbarvení minerálů podobné chování třídy plné dětí.

16.5.2024 v 8:00 | Karma: 13,03 | Přečteno: 140x | Diskuse| Věda

Dana Tenzler

Co způsobuje barvu minerálů (3) - co nutí děti zlobit?

Když rozebereme případ dětí z úplně zlobivé třídy (idiochromatismus - název si můžete zapamatovat podle toho, že se z takových dětí člověk musí zbláznit), zjistíme, že mají ke zlobení (a minerály k zabarvení) jen několik důvodů.

13.5.2024 v 8:00 | Karma: 14,81 | Přečteno: 211x | Diskuse| Věda

Dana Tenzler

Co způsobuje barvu minerálů (2) - proč jsou vlastně děti zlobivé?

V tomto díle blogového seriálu o barvě minerálů se dozvíte, kdo nebo co způsobuje tzv. alochromatismus, idiochromatismus a pseudochromatismus. (délka blogu 4 min.)

9.5.2024 v 8:00 | Karma: 15,38 | Přečteno: 227x | Diskuse| Věda

Dana Tenzler

Co způsobuje barvu minerálů a hornin? (1)

Zamysleli jste se někdy nad tím, odkud berou minerály a horniny svou barvu? Vysvětlení barvy minerálů se dá překvapivě vysvětlit dynamikou žáků ve školní třídě. (délka blogu 4 min.)

6.5.2024 v 8:00 | Karma: 17,51 | Přečteno: 243x | Diskuse| Věda

Dana Tenzler

Proč nevidíme cizí civilizace - vysvětlení geologa (2)

Ze svých zkušeností s vývojem života na Zemi odhadujeme možnosti vývoje na cizích planetách. Jednotlivé specifikace planet z pohledu geologa. Kde se může život vyvíjet nejrychleji? (délka blogu 4 min.)

2.5.2024 v 8:00 | Karma: 21,41 | Přečteno: 409x | Diskuse| Věda
  • Nejčtenější

Atentát na Fica. Slovenského premiéra postřelili

15. května 2024  14:56,  aktualizováno  17:56

Slovenského premiéra Roberta Fica ve středu postřelili. K incidentu došlo v obci Handlová před...

Fico je po operaci při vědomí. Ministr vnitra mluví o občanské válce

15. května 2024  19:25,  aktualizováno  23:12

Slovenský premiér Robert Fico, který byl terčem atentátu, je po operaci při vědomí. S odkazem na...

Fica čekají nejtěžší hodiny, od smrti ho dělily centimetry, řekl Pellegrini

16. května 2024  8:42,  aktualizováno  15:38

Zdravotní stav slovenského premiéra Roberta Fica je stabilizovaný, ale nadále vážný, řekl po...

Pozdrav z lůžka. Expert Antoš posílá po srážce s autem palec nahoru

13. května 2024  18:48,  aktualizováno  14.5 22:25

Hokejový expert České televize Milan Antoš, kterého v neděli na cestě z O2 areny srazilo auto, se...

Putinova časovaná bomba. Kadyrov umírá, rozjíždí se krvavý boj o trůny

17. května 2024  14:16

Premium Ramzan Kadyrov ještě dýchá, v Čečensku se však už začíná hledat jeho nástupce. Naznačují to i...

Okřídlený sebevrah má odstrašit Čínu. Tchaj-wan pokukuje po minidronech

18. května 2024

Premium Tchaj-wan v posledních letech posiluje svoji armádu v reakci na opakované provokace čínské armády....

Klitoris do učebnic patří. Porno může být i prospěšné, říká psycholožka

18. května 2024

Premium Se sledováním porna má zkušenost přibližně 8 z 10 Čechů, říká čerstvý výzkum společnosti CZECHSEX....

Střelec na Fica jde do vazby. Premiérův stav se lepší, převoz ještě není možný

18. května 2024  11:09,  aktualizováno  19:55

Slovenský premiér Robert Fico, kterého ve středu postřelil atentátník, je ve stabilizovaném, ale...

Na trati z Ostravy do Třebechovic srazil vlak člověka, ten na místě zemřel

18. května 2024  19:18

Na železniční trati v Ostravě-Třebovicích srazil v sobotu večer vlak člověka, na místě zemřel. Jeho...

  • Počet článků 976
  • Celková karma 19,49
  • Průměrná čtenost 1320x
Pokud vás blog pobaví nebo se v něm dočtete něco zajímavého - je jeho účel splněn. Přijďte si popovídat do diskuze, často je ještě zajímavější než blog sám, díky milým a znalým návštěvníkům.