Premium

Získejte všechny články
jen za 89 Kč/měsíc

Kdo je kdo? (vesmírná alchymie 5/6)

V jednom jediném nepatrném okamžiku se rozhoduje o bytí a nebytí. Jen málokterý jev je dramatičtější, než výbuch supernovy II. typu. O tom, jak se vesmír stal dobře vybavenou chemickou laboratoří. (délka blogu 8 min.)

Na konci minulého blogu jsme opustili jednu z prvních hvězd v okamžiku, kdy se právě stala supernovou 2. typu. V jejím centru se vytvořila obrovská exotická koule – neutronová protohvězda. Naprostou většinu její hmoty tvořily neutrony, nacházející se v exotickém stavu. Hustota takové protohvězdy bývá dokonce 2x – 3x vyšší, než hustota běžného atomového jádra.

Neutronové hvězdy nemají žádný další zdroj energie (logicky už v nich neprobíhá žádná další jaderná fúze) – celkem rychle tedy vychládají. U objektů, které se podařilo pozorovat, byla naměřena teplota mezi 0,5  - 1,5 milióny stupňů.

Co se stalo s ostatní hmotou bývalé obří hvězdy?

Zbytek bývalé hvězdy, který se nezúčastnil tvorby neutronové koule, je při explozi odmrštěn do okolí. Chemické prvky, které po celý hvězdný život vznikaly v jejím nitru, se dostávají do volného vesmíru. Už to nejsou jen osamělá pevná prachová zrnka, které za sebou hvězda trousila během své fáze rudého obra – do okolí hvězdy se při explozi supernovy dostává opravdu obrovské množství hmoty.

Konkrétní procesy, které se zasluhují o dynamiku, tedy průběh samotné exploze, jsou komplikované, přenechme je tedy odborníkům. Zajímavé jsou ale typy reakcí, které přispívají k tvorbě nových chemických prvků. Vesmír vděčí supernovám za všechny ostatní prvky, těžší než železo.

Prvotřídní alchymistická dílna

V minulém díle jsem zmínila, že se pomocí syntézy dvou lehčích jader dají vytvořit jen prvky, které jsou lehčí než železo.

Proč zrovna železo?

Důvodem je působení elektromagnetické síly. Jádra jsou totiž principiálně vždy kladně nabitá. Náboje stejného typu se odpuzují, náboje opačné se naopak přitahují. Oba lehké prvky musí nejprve překonat tuto sílu, která se je snaží od sebe oddělit. Čím vyšší je náboj jádra (čím více je v něm protonů), tím silnější je odpudivá síla. Příroda tuto obranu překonává v centrech hvězd zvyšováním tlaku a teploty – to ale nejde donekonečna. Logicky musí jednou dojít ke stavu, kdy už další zvyšování teploty (a tím i kinetické energie jednotlivých jader) není možné.

Dalším limitem pro úspěšnou fúzi v jádrech hvězd je uvolňování energie při syntéze dvou lehčích jader na těžší. Čím těžší prvky takto vznikají, tím méně energie se při fúzi získá. Posledním prvkem, při kterém ještě funguje fúze jako zdroj energie - je v našem vesmíru železo.

Všechny ostatní, těžší prvky vznikají přímým záchytem neutronů a jejich eventuální další přeměnou na protony. To je velice praktické. Připomeňme si, že pokud má vybuchující supernova něčeho opravdu dost – jsou to právě neutrony.

Středověcí alchymisté nemohli nikdy ve svých snahách uspět. Neměli k dispozici ani dostatečné množství energie, natož přístroje, které by uvolňovaly neutrony. Nevěděli dokonce ani, co to vlastně neutrony jsou… a proč jsou při tvorbě zlata (a ostatních prvků) tak důležité.

Co mají chemické prvky společné a v čem se liší?

Všechny souvislosti vysvětlila až mnohem později vznikající věda, které říkáme chemie. Spolu se svou starší sestrou fyzikou vysvětlila jak rozdíly, tak podobnost mezi jednotlivými chemickými prvky. 

Podoba spočívá v tom, že se úplně všechny chemické prvky skládají jen ze tří různých částic. Přírodě se dá opravdu vytknout ledacos – jen ne to, že by byla rozhazovačná a plýtvala.

Přitom je jedna z těchto tří částic (elektron) zodpovědná za chemické vlastnosti prvků a za jejich vzájemné hrátky – chemické reakce. O fyzikálních vlastnostech a tedy identitě jednotlivých chemických prvků – pak rozhodují skutečně jen dvě částice. Jsou to protony a neutrony, které tvoří jejich jádra.

Tento fakt – je fascinující. Vesmír tak trochu připomíná matematickou binární číselnou soustavu, která je také schopná vyjádřit všechna čísla s pomocí pouhých dvou jednotek – jedniček a nul.

Oproti matematice tu je ale jeden rozdíl. Matematika je exaktní věda. Vesmír je naopak pestrý a možná má také trochu smysl pro humor. Jedním z vesmírných žertíků je fakt, že vesmírné „jedničky“ a „nuly“ nemají v prvcích určené přesné pořadí. Je v podstatě jedno, kde se přesně nacházejí. Vesmír netrvá na přesném zasedacím pořádku. 

Rozdíl mezi jednotlivými chemickými prvky spočívá jen v množství protonů a neutronů (tedy jedniček a nul) v jádře prvku, podobně jako množství jedniček a nul a jejich pozice v číslech binárního kódu rozhoduje o tom, o jaké číslo se jedná.  

Kdo určuje identitu chemického prvku?

V našem vesmíru existuje 92 různých chemických prvků, které jsou natolik stabilní, aby mohly existovat velice dlouhou dobu, srovnatelnou se dobou existence vesmíru. Dají se přirovnat k různým rodinám. Tyto rodiny mají různé členy, kteří se od sebe navzájem trošku liší, přesto všichni nesou stejné příjmení.

Rodinné příjmení – tedy podstatu a jméno chemického prvku - je určeno počtem protonů v jádře. Přítomnost a množství neutronů nejsou pro chemickou podstatu prvku důležité. Neutrony pro změnu rozhodují o identitě konkrétního člena dané rodiny. V jádrech, která mají stejný počet protonů, od sebe navzájem odlišuje různé množství neutronů chemické „sestry a bratry“ – izotopy prvků.

Alchymistické proměny při výbuchu supernovy

Po tomto malém výletu do chemie se vraťme zpátky k vybuchující hvězdě. Výbuch supernovy je vlastně jeden obrovský alchymistický mejdan.

Mezi pozvané hosty patří lehčí chemické prvky a hlavně velké množství atomů železa, které bylo posledním svědkem života bývalé hvězdy. Mísí se velkých množstvím neutronů, které pocházejí z bývalých jader chemických prvků vzniklých ve hvězdě - a roztrhaných extrémním zářením (jevu se říká dezintegrace - viz předchozí blog).

Myslím, že nikoho nepřekvapí, že je taková party dost bouřlivá – a díky obrovskému množství energie mezi hosty dochází k intenzivním interakcím.

A jako na každé pořádné oslavě – se samozřejmě nabízí otázka: Kdo s kým? Vesmír je sice stydlivý, vědci jsou ale hodně zvědaví – a tak se v minulosti podařilo odhalit roušku, která skrývala tajemství vzniku těžkých prvků. Ale o tom, jak vznikalo (nejenom) zlato až příště…

 

 

Zdroje:Heinz Oberhummer: Kerne und Sterne: Einführung in die Nukleare Astrophysik. Barth, Leipzig/Berlin/Heidelberg 1993, Andrew McWilliam, Michael Rauch: Origin and evolution of the elements. Cambridge Univ. Pr., Cambridge 2004

Autor: Dana Tenzler | pondělí 13.11.2017 8:00 | karma článku: 20,94 | přečteno: 567x
  • Další články autora

Dana Tenzler

Modrý pigment - ftalocyanin mědi - PB 15

Ftalocyanin mědi je komplex mědi a ftalocyaninu. Je to nejvýznamnější moderní modrý pigment, který známe už asi 100 roků. (délka blogu 4 min.)

13.6.2024 v 8:00 | Karma: 11,92 | Přečteno: 89x | Diskuse| Věda

Dana Tenzler

Mayská modř - PB 8

Dalším zajímavou malířskou barvou, se kterou se stojí za to seznámit, je starodávná, blankytně modrá, mayská modř. Možná ji znáte pod zkratkou PB 8 (pigment blue 8).

10.6.2024 v 8:00 | Karma: 16,69 | Přečteno: 208x | Diskuse| Věda

Dana Tenzler

Proč rozkrojené jablko na řezu hnědne

Rozkrojené jablko ale také třeba hruška hnědnou v místě řezu. Na vině je, a vy to tušíte, chemie. Jak se dá tomuto jevu předejít? (délka blogu 3 min.)

6.6.2024 v 8:00 | Karma: 17,80 | Přečteno: 264x | Diskuse| Věda

Dana Tenzler

Čínská sonda Chang-e 6 a její mise na Měsíci

Vesmírná sonda Chang-e 6 je další čínský přístroj, která se zabývá výzkumem Měsíce. O víkendu přistál na odvrácené straně Měsíce. Má dovézt zpět na Zemi vzorky tamní horniny.

3.6.2024 v 8:00 | Karma: 17,68 | Přečteno: 192x | Diskuse| Věda

Dana Tenzler

Egyptská modř

Seriál (o malířských barvách) se bude zabývat zajímavostmi ze světa pigmentů. Čím nejlépe začít? Jedním z nejstarších, lidmi uměle vyrobených pigmentů. Umělci ho používali už před několika tisíciletími.

30.5.2024 v 8:00 | Karma: 18,07 | Přečteno: 227x | Diskuse| Věda
  • Nejčtenější

Policie v pohotovosti kvůli hrozbě terorismu. Zadržela podezřelého cizince

8. června 2024  23:01,  aktualizováno  9.6 12:41

Policie dopadla cizince podezřelého ze zvlášť závažného zločinu, po kterém vyhlásila pátrání v...

„Ukrajinská sebevražda“. Intriky v Kyjevě čím dál víc frustrují Západ

11. června 2024  19:21

Kádrové změny nezmítají jen ruským ministerstvem obrany, rostoucí pozornost vzbuzují i rošády v...

Dar pro Ukrajinu prostřednictvím Čechů vyvolal na Tchaj-wanu bouři

10. června 2024

Premium Dar, který má pomoci Ukrajině s obnovou tamního zdravotnictví, způsobil na Tchaj-wanu politický...

Volby vyhrálo ANO před SPOLU. Stačilo! i Přísaha mají dvě křesla, propadli Piráti

9. června 2024  20:29,  aktualizováno  10.6

Volby do Evropského parlamentu vyhrálo v Česku hnutí ANO. Od voličů získalo 26,14 procenta hlasů,...

Policie prověřovala nákup vojenského materiálu pro Ukrajinu. Zajistila 300 milionů

5. června 2024,  aktualizováno  8.6 21:12

Premium Česká policie v tichosti prověřovala třaskavý případ, který může mít negativní dopad na zbrojní...

Kazaň a Helena. Ruská a americká jaderná ponorka se přiblížily na dohled

13. června 2024  22:12

Na Kubě, kam tento týden dorazily ruské bojové lodě, se nachází i americká jaderná ponorka USS...

„Jako impérium si musíme podrobit barbary.“ Ruský moderátor rozzuřil Číňany

13. června 2024  22:11

Ruský propagandistický moderátor Sergej Mardan silně pobouřil čínské uživatele sociálních...

USA se bezpečnostně zavázaly Ukrajině na 10 let. Koordinovat zbraně má NATO

13. června 2024  21:18,  aktualizováno  21:41

Zelenskyj a Biden v Itálii podepsali desetiletou americko-ukrajinskou bezpečnostní dohodu zaměřenou...

Medveděv nevyloučil do budoucna pokoutní jaderné útoky proti Západu

13. června 2024  21:29

Bývalý ruský prezident Dmitrij Medveděv zveřejnil ve čtvrtek nové výhrůžky namířené proti Západu....

  • Počet článků 984
  • Celková karma 17,85
  • Průměrná čtenost 1283x
Pokud vás blog pobaví nebo se v něm dočtete něco zajímavého - je jeho účel splněn. Přijďte si popovídat do diskuze, často je ještě zajímavější než blog sám, díky milým a znalým návštěvníkům.