Nějaké výpočty a trocha teorie v praxi
Příklad první
Je opravdu zvýšení koncentrace CO2 o 14 tisícin procenta v atmosféře takový problém?
Pro výpočet průměrné teploty (měří a počítá se průměrná teplota vzduchu při povrchu země) na základě koncentrace CO₂ v atmosféře se obvykle používají empirické vztahy a modely založené na rovnicích radiační bilance a zpětné vazby skleníkového efektu. Zjednodušený vzorec pro odhad změny globální průměrné teploty v závislosti na koncentraci CO₂ je:
ΔT=λ⋅ΔF (1)
kde:
- ΔT je změna teploty (v °C)
- λ je klimatická citlivost (°C / W·m⁻²), která určuje, jak planeta reaguje na změny radiačního toku
- ΔF je změna radiačního toku (v W·m⁻²) způsobená změnou koncentrace CO₂.
Pro změnu radiačního toku ΔF v závislosti na koncentraci CO₂ platí empirická logaritmická rovnice:
ΔF=α⋅ln(C/C0) (2)
kde:
- C je aktuální koncentrace CO₂ (v ppm)
- C0 referenční koncentrace CO₂ (v ppm), obvykle se udává předindustriální úroveň, cca 280 ppm
- konstanta α = 5.35 W·m⁻² je odvozená z teoretických výpočtů a experimentálních měření interakce CO2 s infračerveným spektrem, udává faktor proporcionality pro účinek CO₂ za standardních atmosférických podmínek [2]
Dosazením (2) do (1) získáme:
ΔT=λ⋅α⋅ln( C/C0) (3)
Pokud je tedy klimatická citlivost λ=0.8 °C / W·m⁻² a koncentrace CO₂ se zvýší z 280 ppm na dvojnásobek, tedy 560 ppm a dosadíme, tak:
ΔT=0.8⋅5.35⋅ln(560/280)=0.8⋅5.35⋅ln(2)≈0.8⋅5.35⋅0.693≈2.97 °C
Výsledkem je, že zdvojnásobení koncentrace CO₂ oproti předindustriálním hodnotám by vedlo ke zvýšení průměrné globální teploty o přibližně 3 °C.
Pokud dosadíme současnou koncentraci, která je 420 ppm, tedy o 50% vyšší než v předindustriální době tak nám vyjde ΔT≈1.73 °C
Zde je potřeba trochu teoretizovat. Vypočtená hodnota je vyšší, než jaká je naměřená hodnota, která se pro celou planetu (rok 2024) pohybuje kolem 1.5°C. Je ale potřeba zdůraznit, že se nacházíme v maximu sluneční aktivity, která průměrnou teplotu zvyšuje také o několik desetin, takže rozdíl naměřené a spočítané hodnoty by mohl být ještě větší. Je to proto, že pro přesnější modelování je potřeba použít komplexní klimatické modely, které zahrnují i další faktory, jako je vliv vodní páry, albeda, oblačnosti a stavu ekosystémů (asi 16 velmi důležitých a asi 3 z nich se už překlopily do opačného stavu), které udržují tepelnou rovnováhu planety [3].
Lokální změny jsou ale na pevnině zpravidla vyšší, zatímco teplota na moři je naopak nižší. Naměřené hodnoty pro Českou republiku udávají rozdíl za posledních 60-65 let nárůst o +2,2°C [1].
Pokud bychom chtěli ještě více teoretizovat, pak je potřeba se ponořit do kvantové fyziky a hledat odpověd na otázku, jaká je pravděpodobnost záchytu fotonu určité barvy na molekule CO2 a jeho přeměny na kinetickou (termickou energii). Spektrum, ve kterém CO2 pohlcuje není spojité a pravděpodobnost záchytu roste samozřejmě s délkou dráhy, kterou foton v atmosféře urazí. Při kolizi může dojít ke třem stavům. K excitaci a opětnénu uvolnění fotonu (při deexcitaci), k excitaci a přeměně na několik infračervených fotonů opět při deexcitaci, nebo právě k přímé přeměně na kinetickou energii - teplo.
Pojítkem mezi výše uvedenými empirickými vztahy a kvantovým modelováním je Beer-Lambertův zákon pro absorbce.
V našem případě podíl záření absorbovaného CO₂ lze tedy modelovat podle Beer-Lambertova zákona takto:
I=I0e-kCL (4)
kde:
- I intenzita dopadajícího záření (W·m⁻²)
- I0 intenzita vystupujícího záření (W·m⁻²)
- κ je absorpční koeficient
- C je koncentrace CO₂
- L je vzdálenost při průchodu médiem
Absorbance A se pak spočítá ze (4) podle vztahu:
A = ln(I0/I) = kCL (5)
Podle Stefan-Boltzmannova zákona je možné a absorbance dopočítat absorbovanou energii a z absorbované energie lze pak odvodit změnu teploty atmosféry. Výpočet není pro planetární podmínky triviální, plynný obal země není homogenní a má různé vrstvy, přitom nás zajímá jen ta vrstva, která při povrchu země. Uvedené vztahy ale pro představu, jak se dopočítat přibližných hodnot postačují.
Tady je potřeba si říci o jakém prostředí se bavíme. Atmosféra má velmi malé albedo (odrazivost), ale je trasparentní, to znamená, že většina záření projde. Další vlastnost je mocnost vrstvy. Výška, do které atmosféra sahá je asi 100 km a další důležitá vlastnost je, že vzduch je dobrý tepelný izolant. Z toho plyne, že povrch země a se bude ohřívat mnohem rychleji, než vzduch. Oceány a vodní plochy mají svoje spefikum v tom, že mají opět velmi malé albedo, asi 3.5%, mají opět poměrně velkou hloubku, jsou schopné pohltit velké množství tepla, jsou částečně transparentní, ale záření oproti atmosféře velmi intenzivně pohlcují. Oceány jsou spolu s polárními oblastmi nejdůležitějšími ekosystémy udržujícímu tepelnou rovnováhu.
Pojďme se tedy ještě podívat na teplotu povrchu země nebo spíše povrchů obecně.
Příklad druhý
Jaká je teplota fotovoltaických panelů s účinností 20% na 50 stupni s.š. v poledne v dubnu, když okolní teplota vzduchu je 20 stupňů celsia? Mohou panely výrazně měnit klima a ohřívat planetu?
Teplota fotovoltaického panelu (Tpanel) závisí na několika faktorech, včetně účinnosti panelu, intenzity slunečního záření, okolní teploty a teplotního koeficientu panelu. Výpočet lze provést následujícím způsobem:
Vzorec pro teplotu panelu:
Tpanel=Tair+G⋅(1−η)/U (6)
- Tair je okolní teplota vzduchu (°C)
- G je intenzita dopadajícího slunečního záření (W/m²)
- η je účinnost panelu (např. 0,20 pro 20%)
- U je teplotní ztrátový koeficient (typicky 25–30 W/m²·K pro volně větrané panely)
Předpoklady:
- Okolní teplota: Tair=20°C
- Sluneční záření v dubnu na 50° s. š.: Při jasném poledni může být intenzita záření přibližně 800 W/m², albedo panelu je asi 10%, tedy G = 720 W/m²
- Účinnost panelu: η=0.20
- Teplotní koeficient ztrát: U=25 W/m²·K
Výpočet:
- Výpočet absorpce tepla: (1−η)=0.80, tj. 80 % slunečního záření se přemění na teplo
- Přebytečné teplo na m²: Q=G⋅(1−η)=720⋅0.80=576 W/m²
- Teplotní přírůstek díky přebytečnému teplu: ΔT=Q/U=576/25=23.0°C
- Teplota panelu: Tpanel=Tair+ΔT=20+23.0=43.0°C [7]
Pokud by panel nevyráběl, tepota by byla 48.8°C. Z uvedeného je patrné, že albedo panelu je zdánlivé, protože pokud 20% energie spotřebuje, tak je výsledná teplotní bilance podobná, jako by panel odrazil 30%. To odpovídá albedu například trávníku, který bude ale chladnější. Ochlazuje se biologickým odpařováním.
Následující graf ukazuje prostou lineární závislost rozdílu teploty v závislosti na intezitě záření světla. Je potřeba říci, že vzhledem k tomu, že účinnost panelů s teplotou klesá, tak závislost bude složitější a křivka bude stoupat ještě trochu strměji.
Jestliže účinnost panelu (η) klesá s teplotou, je potřeba tento jev zohlednit i ve vzorci:
η(Tpanel)=ηSTC⋅[1+α⋅(Tpanel−Tref)] (7)
Kde:
- ηSTC je účinnost panelu při referenční teplotě (například Tref=25°C),
- α je teplotní koeficient účinnosti (např. −0,004/°C),
- Tref je referenční teplota (obvykle 25°C).
Přesnější vzorec pro teplotu panelu se pak dá vyjádřit rovnicí po dosazení (7) do (6), kterou lze řešit vytknutím Tpanel a dosazením hodnot:
Tpanel=Tair+G⋅[1−ηSTC⋅(1+α⋅(Tpanel−Tref))]/U (10)
Veličiny a jejich jednotky jsou výše v textu.
Albedo města je v průměru asi 7%. Rozdíl oproti většině jiných povrchů je v tom, že panely jsou chlazené/ohřívané vzduchem, zatímco povrchy jsou většinou spojené s nějakým podkladen, takže vliv vzduchu a podkladu je složitější. Ohřívání a ochlazování bude probíhat jinak, ale obecně se nedá říci, že panely budou teplotní bilanci v létě ve městě zvyšovat. V zimě bude situace opačná. Pokud napadne sníh, albedo sněhu je vysoké, kolem 90% a současně i promrzlá půda se bude ohřívat mnohem pomaleji než panely, které jsou oboustranně chlazené nebo ohřívané jen vzduchem.
Energetická potřeba lidstva se odhaduje na zhruba 25 petawatthodin (PWh) ročně (údaj pro rok 2022). Počítáme-li s průměrnou účinností fotovoltaických panelů kolem 20 % a průměrnou globální dostupností slunečního záření (roční produkce elektrické energie 1 m² panelu je přibližně 200 kWh/m² ve vhodných oblastech, např. pouště), můžeme pak odhadnout plochu potřebnou k výrobě této energie na 125 000km². To je plocha bývalého Československa nebo Bulharska.
Když to shrneme:
- Plocha potřebná pro výrobu elektřiny pro celou planetu by byla relativně malá (125 000 km²) ve srovnání s celkovou rozlohou Země (asi 535 milionů km²).
- Lokální dopady na teplotu a klima by mohly být výrazné, zejména v oblastech s významně vyšším albedem než mají panely (např. pouště), kde by mohlo dojít ke zvýšení průměrné teploty o několik stupňů (odhadem 2-3°C).
- Globální dopad další masívní výstavby FVE na celkovou teplotu planety bude minimální. Převáží pozitivní efekty v důsledku snížení emisí CO₂.
Závěrem bych chtěl poděkovat umělé inteligenci Chat GPT za účinnou pomoc s vyhledáváním zdrojů, údajů a vzorců a také Desmos kalkulátoru za pomoc s grafy. :-)
* Solární konstanta je 1348,3 W/m2, na Zemský povrch dopadne maximálně 1200 W/m2. Proto pro vyšší hodnoty za běžných podmínek graf ztrácí smysl.
+ Graf nezapočítává albedo, to znamená, že odečtená teplota v grafu bude oproti výpočtu asi o 10% vyšší.
[3] IPCC AR6 (2021). Climate Change 2021: The Physical Science Basis
[4] Archer, D. (2012). Global Warming: Understanding the Forecast. Wiley.
[6] Třípól cz
[6] Fotovoltaický systém, bakalářská práce Jan Just
[7] https://www.solarnplus.com/how-to-calculate-pv-cell-temperature/
Petr Hariprasad Hajič
Otevřený bianko dluh který budeme muset zaplatit

Nedávno jsem si položil otázku, kolik času bude lidstvo potřebovat, aby snížilo ekologickou zátěž planety způsobenou vypouštěním oxidu uhlíku. Zjistil jsem, že stovky let. Možná, že nám příroda pomůže, když pomůžeme my jí.
Petr Hariprasad Hajič
Je libo dotaci na maželku a manžela na děti už máme

Někdo říká, že dotace jsou zlo, jiní tvrdí, že incentivy pokřivují trh. Pokud chce vláda, nebo kdokoli něco podpořit, tak dá výhodnou cenovou nabídku, slevu, nebo odpustí daně, úroky. Je to dobře, špatně, nebo je toho už moc?
Petr Hariprasad Hajič
Je čmoudění opravdu taková výhoda?

Opakovaně se setkávám s názorem, že kdo čmoudí, tak má ekonomickou výhodu oproti těm, kteří se snaží nečmoudit a dekarbonizují. Podívejme se na loňská data. Je možné, že trik je někde jinde?
Petr Hariprasad Hajič
Solární rok v Indii

Setkal jsem se s názorem, že v jižních oblastech se nebude dařit solárním elektrárnám z důvodu vysoké prašnosti a vysokých teplot. Pojďme se tedy podívat na jeden takový případ v Indii
Petr Hariprasad Hajič
Kolik výfuků má auto se spalovacím motorem

Diskuze o čisté elektromobilitě se často stáčí k tvrzení, že elektromobil má výfuk v elektrárně. Autoři tohoto tvrzení tak nějak pomíjí skutečnost, že fosilní paliva nespadla z nebe, ale že to někdo někde taky musel vyrobit.
Další články autora |
Novým papežem se stal americký kardinál Prevost, přijal jméno Lev XIV.
Sledujeme online Novým papežem se stal americký kardinál Robert Francis Prevost, oznámil z baziliky sv. Petra...
Zemřel Jiří Bartoška, charizmatický herec a prezident karlovarského festivalu
Ve věku 78 let zemřel Jiří Bartoška. Byl dlouholetým prezidentem Mezinárodního filmového festivalu...
Nekontrolovaně k Zemi padající sovětská sonda se zřítila do Indického oceánu
Sovětská sonda Kosmos 482 ze 70. let minulého století se rozpadla v sobotu ráno kolem osmé hodiny...
Rusy rozzuřil hořící Kreml na ponožkách českého zmocněnce. Darebák, zní z Moskvy
Řádnou vlnu emocí v Rusku vzbudil český vládní zmocněnec pro rekonstrukci Ukrajiny Tomáš Kopečný....
Soud poslal do vězení starostu Řeporyjí Novotného, porušil podmínku
Soud poslal na tři měsíce do vězení starostu pražských Řeporyjí Pavla Novotného (ODS). Na návrh...
Postoupí český zástupce Adonxs? Začíná druhé semifinále Eurovize
Ve švýcarské Basileji začne dnes ve 21:00 druhé semifinálové kolo soutěže Eurovision Song Contest...
Příteli, choval jsem se k tobě dobře. V Indii vyrábět? To ne, sepsul Trump šéfa Applu
Americký prezident Donald Trump si nepřeje, aby americká společnost Apple vyráběla své produkty v...
Cla už dohnala i giganta spoléhajícího se na nízké ceny. Walmart ohlásil zdražování
Americkému maloobchodnímu gigantu Walmart klesl v prvním čtvrtletí zisk o více než 12 procent,...
Řidička vjela tramvaji v Praze do cesty, z auta ji vyprošťovali hasiči
V pražské ulici Na Petřinách došlo ve čtvrtek po půl sedmé k dopravní nehodě tramvaje a osobního...

Pronájem byty 1+kk, 30 m2 - Praha - Krč
Budějovická, Praha 4 - Krč
18 000 Kč/měsíc
- Počet článků 39
- Celková karma 8,84
- Průměrná čtenost 582x